首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   9篇
电工技术   3篇
化学工业   4篇
金属工艺   6篇
机械仪表   7篇
建筑科学   4篇
轻工业   2篇
无线电   15篇
一般工业技术   24篇
冶金工业   9篇
原子能技术   1篇
自动化技术   34篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   12篇
  2016年   4篇
  2015年   10篇
  2014年   14篇
  2013年   15篇
  2012年   11篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
1.
2.
Much research on the development of a robotic capsule and micro robot for the diagnosis of gastrointestinal diseases has been carried out. The powering of these micro systems is becoming very challenging as the implementation of such systems is limited due to the existence of on-board power supplies. This paper presents a micro robotic system based on magnetic principles. The goal is to build a system in which a capsule-robot can be manipulated wirelessly inside an enclosed environment such as human??s body. A prototype of capsule-robot is built and tested, that can be remotely operated with three DOF in an enclosed environment by transferring magnetic energy and electromagnetic waves. A magnetic drive unit generates magnetic energy for the manipulation. Experimental results show the capsule-robot is manipulated and moved through a desired trajectory in a viscous fluid. The capsule-robot can be potentially used for endoscopy and colonoscopy.  相似文献   
3.
4.
In this paper, we present the performance of multi-antenna selective combining decode-and-forward (SC-DF) relay networks over independent but non-identical Nakagami-m fading channels with imperfect channel estimation. The outage probability, moment generating function (MGF) and symbol error probability (SEP) will be derived in closed-form using the SNR statistical characteristics. To make the analysis trackable, we have derived the MGF and SEP for integer values of fading severity, m. Also, to make the relations more simple, we develop high signal to noise ratio (SNR) analysis for the performance metrics of our system. Subsequently, we propose optimal and adaptive power allocation algorithms along with the equal power allocation method. Finally, for comparison with analytical formulas, we perform some Monte-Carlo simulations.  相似文献   
5.
Ti-6Al-4V sheets, 3.2-mm in thickness, were butt welded using a continuous wave 4 kW Nd:YAG laser welding system. The effect of two main process parameters, laser power and welding speed, on the joint integrity was characterized in terms of the joint geometry, defects, microstructure, hardness, and tensile properties. In particular, a digital image correlation technique was used to determine the local tensile properties of the welds. It was determined that a wide range of heat inputs can be used to fully penetrate the Ti-6Al-4V butt joints during laser welding. At high laser power levels, however, significant defects such as underfill and porosity, can occur and cause marked degradation in the joint integrity and performance. At low welding speeds, however, significant porosity occurs due to its growth and the potential collapse of instable keyholes. Intermediate to relatively high levels of heat input allow maximization of the joint integrity and performance by limiting the underfill and porosity defects. In considering the effect of the two main defects on the joint integrity, the underfill defect was found to be more damaging to the mechanical performance of the weldment than the porosity. Specifically, it was determined that the maximum tolerable underfill depth for Ti-6Al-4V is approximately 6 pct of the workpiece thickness, which is slightly stricter than the value of 7 pct specified in AWS D17.1 for fusion welding in aerospace applications. Hence, employing optimized laser process parameters allows the underfill depth to be maintained within the tolerable limit (6 pct), which in turn prevents degradation in both the weld strength and ductility. To this end, the ability to maintain weld ductility in Ti-6Al-4V by means of applying a high energy density laser welding process presents a significant advantage over conventional arc welding for the assembly of aerospace components.  相似文献   
6.
7.
8.
9.
The effects of postweld heat treatment (PWHT) on 3.2-mm- and 5.1-mm-thick Ti-6Al-4V butt joints welded using a continuous wave (CW) 4-kW Nd:YAG laser welding machine were investigated in terms of microstructural transformations, welding defects, and hardness, as well as global and local tensile properties. Two postweld heat treatments, i.e., stress-relief annealing (SRA) and solution heat treatment followed by aging (STA), were performed and the weld qualities were compared with the as-welded condition. A digital image correlation technique was used to determine the global tensile behavior for the transverse welding samples. The local tensile properties including yield strength and maximum strain were determined, for the first time, for the laser-welded Ti-6Al-4V. The mechanical properties, including hardness and the global and local tensile properties, were correlated to the microstructure and defects in the as-welded, SRA, and STA conditions.  相似文献   
10.
In this study, failure of a high pressure economizer tube of a boiler used in gas-Mazut combined cycle power plants was studied. Failure analysis of the tube was accomplished by taking into account visual inspection, thickness measurement, and hardness testing as well as microstructural observations using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). Optical microscopy images indicate that there is no phase transformation during service, and ferrite-pearlite remained. The results of XRD also revealed Iron sulfate (FeSO4) and Iron hydroxide sulfate (FeOH(SO4)) phases formed on the steel surface. A considerable amount of Sulfur was also detected on the outer surface of the tube by EDS analysis. Dew-point corrosion was found to be the principal reason for the failure of the examined tube while it has been left out-of-service.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号